
AD-AIIO 052 WISCONSIN UNIV-MAOISON DEPT OF C OMPUTER SCIENCES F/6 9/2
DUPLICATE RECOR D ELIMINATION IN LARGE DATA FILESU 1 0FIDAN.0JDWT AAG9 9 0

UNCLASSIFIJED CSTR-445 NL

LmEE~hhE



-

I1.0 .

111112----5 1.~4 __112

___IL25_ 1.4 111111.6



EI24

COMPUTER SCIENCES
DEPARTMENT

oUniversity of Wisconsin -
Madison

Duplicate Record Elimination
in

Large Data Files

Dina Friedland
David J. DeWitt

Computer Sciences Technical Report #445

August 1981

10.01 26 82 042
N .M -A - -- 7 3



Duplicate Record Elimination
in

Large Data Files

Diri Friedland
David J. DeWitt

Computer Sciences Department
University of Wisconsin

Madison, Wisconsin

This research was partially supported by the National Science
Foundation' under grant MCS78-01721, the United States Army under
contracts' #DAAG29-79-C-0165 and #DAAG29-80-C-0041, and the
Department of Energy under contract #DE-AC02-81ER10920.



ABSTRACT

-~hspaper addresses the issue of duplicate elimination in
large data files in which many occurrences of the same record may
appear. A comprehensive cost analysis of the duplicate elimina-
tion operation is presented. This analysis is based on a com-
binatorial model developed for estimating the size of intermedi-
ate runs produced by a modified merge-sort procedure. The per-
formance of this modified merge-sort procedure is demonstrated to
be significantly superior to the standard duplicate elimination
technique of sorting followed by a sequential pass to locate
duplicate records. The results can also be used to provide criti-
cal input to a query optimizer in a relational database system,

1\SCTED



1. Introduction

Files of data frequently contain duplicate entries and the

decision whether and when to remove them must be made. For exam-

ple, in relational database management Eystems (DBMSs) the seman-

tics of the projection operator require that a relation be

reduced to a vertical sub-relation and that any duplicates intro-

duced as a side-effect be eliminated. In general, duplicate

records may be introduced in a file either by performing an

incorrect update operation or by being given a restricted view of

the file. Identifying record fields such as names are often

masked from an application program or from an output file before

it is delivered to a user. In these cases, the amount of dupli-

cation can be significant and the cost of removing the duplicates

substantial.

Duplicate elimination on a single processor is almost

universally done by sorting. Because of the expense of sorting,

relational DBMSs do not always eliminate duplicates when execut-

ing a projection. Rather, the duplicates are kept and carried

along in subsequent operations. Only after the final operation

in a query is performed, is the resultant relation sorted and

duplicates eliminated.

The decision whether to eliminate duplicates or not (at

various stages of the query execution) lies with the query optim-

izer subsystem of a DBMS. The purpose of a query optimizer is to

schedule instructions from a query in a manner that will minimize

the total query execution time. Typical factors affecting the

decisions of an optimizer are: the types of operations in the



2

query, the availability of auxiliary information about files

(such as indices), the size of the input files, and the expected

size of the intermediate and output files. For relational DBMSs,

the expected size of intermediate relations is often kept in the

form of "selectivity factors" which reflect the observed values

of previously executed operations on the same relation.

To our knowledge, existing query optimizers do not ade-

quately schedule duplicate elimination operations. The problem

lies in the fact that the literature does not contain a model for

analyzing the cost of this operation. In this paper we propose a

combinatorial model for the use in the analysis of algorithms for

duplicate elimination. We contend that this model can serve as a

useful tool for a query optimizer to decide when to eliminate

duplicates. We also describe a modified sorting method for elim-

inating duplicates and use our model to show its superiority over

the accepted method of first sorting a relation and then elim-

inating duplicates with a linear scan.

In Section 2, we discuss particular aspects of duplicate

elimination in relational DBMSs. We present three methods for

performing duplicate elimination in Section 3. The rest of the

paper concentrates on a performance evaluation of one of these

methods - a modified merge-sort procedure. In Section 4, we

develop a combinatorial model that enables us to estimate the

size of intermediate sorted runs produced by merging. In Section

5, we present some numerical evaluations based on this model.

Our conclusions and suggestions for potential applications and

extensions of our results are presented in Section 6.



3

2. Duplicate Elimination in a Relational DBM4S

In relational database management systems, duplicate elimi-

nation constitutes a major part of the projection operation.

Projecting a relation requires the execution of two distinct

phases. First, the source relation must be reduced to a vertica~l

subrelation by discarding all attributes other than the projec-

tion attributes. Then, duplicate tuples that may have been

introduced as a result of the first operation must be removed in

order to produce a proper relation. The first operation, forming

the projected tuples, can either be performed in a linear scan of

the relation or may be performed in combination with an operation

preceding the projection, in which case the cost of this step

would be negligible.

For example, consider the "supply" relation:

Isupplier-no I part-no Isource Idestination I qty

If we want to know which suppliers supply which parts in quanti-

ties larger than 1000 units, the relation must be restricted to

(qty>l000) and projected on (supplier-no, part-no). Rather than

creating a temporary relation for the restriction and then scan-

ning it to discard the fields qty, source and destination, these

fields should be eliminated as the restriction is executed.

Since in the "supply" relation there may be many tuples with the

same supplier-no and part-no attribute values, the result will be

a list of non-unique two-attribute tuples. The second part -of

the projection consists of eliminating the duplicate tuples that



4

are introduced by the first phase.

The amount of duplication introduced by the projection

depends on the nature of the projection attribute(s). If we pro-

ject on a primary key, then no duplicates will be introduced.1 On

the other hand, if we discard a primary key and project on other

attributes, a large amount of duplication may appear among the

resulting tuples.

2.1. Implementation of the Projection Operation

Despite the fact that the duplicate elimination is an

integral part of the projection operation as defined in Codd's

relational algebra, relational database systems do not automati-

cally implement it. Relations with duplicate tuples (which are

not proper relations according to the relational algebra seman-

tics) are in fact operated on by restrictions, joins, and other

relational operators. Because duplicate elimination is expensive

and because the tradeoffs between performing it or putting up

with some inconsistent and redundant data are not clear, most

database systems implementations (including relational systems

such as System R [ASTR76] and INGRES [STON76]) postpone it to the

very last stage of query processing. At that stage, the result

tuples are sorted and duplicates are eliminated. If duplicate

elimination is not systematically performed with every projec-

tion, the sets operated on by the relational operators such as

selection and joins are not relations, and the database manage-

1 A primary key is an attribute or a set of attributes which

uniquely identifies a tuple.



5

ment system does not really conform to the relational model.

Katz and Goodman [KATZ81] are currently investigating an exten-

sion of the relational model that allows for duplicates in rela-

tions. This extension deals with multisets that are viewed as a

generalization of relations. 2 (KATZ81] shows how the relational

algebra operators selection, join, and projection can be general-

ized to multisets, and introduces a new operator to explicitly

specify duplicate elimination. Our study does not deal with the

semantics of duplicate elimination. Its goal is to develop tools

for implementing and evaluating the cost of this operation,

whether or not it is done in the context of a relational database

management system. In the case of a relational database, estab-

lishing an accurate cost formula for the projection can make

improved query processing strategies possible. The first step in

establishing such a formula is to evaluate the number of tuples

in the projection.

2.2. Size of the Projected Relation

It is usually assumed that the database system dictionary

can supply a reliable estimate of the size of a relation pro-

jected on any specified subset of attributes. This estimate may

be based on an "a priori" knowledge about the number of distinct

values that the projection attribute(s) can take on. It is rea-

sonable to assume that this kind of information would be stored

for all permanent relations, since it indicates the cardinality

2 (KNUT73] defines a multiset as a set of non-unique elements.
In Section 3, we define more specifically multisets that are
relevant to our study.



6

of the attributes domains. However, the same information will

neither be readily available for temporary relations created dur-

ing intermediate stages of a query execution nor be inexpensive

to compute. In the event that the size of a projected relation

must be quickly estimated, a reasonable approximation may be

achieved by assuming that a relation size is proportional to its

tuple length (KERS80]. Let JRI and IRp I denote the number of

tuples in the source relation and in the projected relation,

respectively. Then,

IRpI = fp*IR

where the "projectivity" f equals the tuple length in bytesP

divided by the length of the projection attribute(s) in bytes.

When indices on the projection attributes exist, the size of the

projection can be estimated as

RI*TT(l/s.)
a1E A I

where A is the set of the projection attributes and s. is the)

index selectivity for attribute a. (YA079].)
Assuming that we have a reliable estimate for the size of

the source relation and the size of its projection, the cost of

the projection can be essentially defined as the cost of elim-

inating duplicates in a multiset of records, knowing the size of

the multiset and the number of distinct records in it.

3. Algorithms for Duplicate Elimination

Using any sorting method with the entire record taken as the

comparison key will bring identical records together. Since many



7

fast sorting algorithms are known, sorting appears to be a rea-

sonable method for eliminating duplicate records. This section

briefly describes three methods for duplicate elimination, two of

which are based on sorting. The first method is an external 2-

way merge-sort followed by a scan that removes the duplicates.

The second method is a modified version of an external 2-way

merge-sort, which gradually removes duplicates as they are

encountered. The third method consists of using an auxiliary bit

array that is obtained by hashing the record fields. This method

was introduced by (BABB79], for efficiently realizing the rela-

tional join and projection operations. We discuss it for the

sake of completeness, but we do not compare it with the other

methods as it requires the use of specialized hardware for effi-

cient operation.

We assume that the file resides on a mass storage device

such as a magnetic disk (although for very large files, magnetic

tape may be used as the storage media). It consists of fixed

size records that are not unique. The amount of duplication is

measured by the "duplication factor" f which indicates how many

duplicates of each record appear in the file, on the average.

The records are grouped into fixed size pages. An I/0 operation

transfers an entire page from disk storage to the processor's

memory or from memory to disk. The file spans N pages, where N

can be arbitrarily large, but only a few pages can fit in the

processor's memory. The cost of processing a complex operation

such as sorting or duplicate elimination can be measured in terms

of page I/O's because I/O activity dominates computation time for



this kind of operations. 3

3.1. The Traditional Method

For a large data file, duplicates are usually eliminated by

performing an external merge-sort and then scanning the sorted

file. Identical records are clustered together by the sort

operation, therefore they are easily located and removed in a

linear scan of the sorted file. We assume that the processor's

memory size is about three pages and some working space. In this

case, the file can be sorted using an external 2-way merge sort

[KNUT73]. First each page is read into main memory, internally

sorted, and written back to disk. Then main memory is parti-

tioned into 2 input buffers and one output buffer, each large

enough to hold a page. The external merge procedure starts with

pairs of pages brought into memory that are then merged into

sorted runs with a length of 2 peges. Each subs.zquent phase

merges pairs of input runs produced by the previous phase into a

sorted run twice as long as the input runs. Note that only one

output buffer is required, since after one page of the output run

has been produced, it can be written to disk allowing the merge

operation to proceed. However, for the algorithm to be correctly

executed, one must make sure that either consecutive pages of a

run are written contiguously on disk, or that they are written at

random locations but can be identified as consecutive pages of

3In fact, since for algorithms such as merge-sort the se-
quence of pages to be read is known in advance, pages can be pre-
fetched enabling computation time to be completely overlapped
with 1/0 time.



9

the same run by some address translation mechanism. With this

provision made, the merge procedure can proceed and produce runs

of size 4 pages, 8 pages, ... , N pages. 4A 2-way merge procedure

requires log 2N phases with N page reads and N page writes at each

phase (since the entire file is read and written at each phase).

After the file has been sorted, duplicate elimination is

performed by reading sorted pages one at a time and copying them

in a condensed form (i.e. without duplicates) to an output

buffer. Again an output buffer is written to disk only after it

has been filled, except for the last buffer which may not be

filled. Thus the number of page I/O's required for this stage

is:

N (reads) + ceil(N/f) (writes)

The total cost for duplicate elimination measured in terms of

page 1/0 operations is:

2N10g2 N + N + ceil(N/f)

3.2. The Modified Merge-sort Method

Most sorting methods can be adapted to eliminate duplicates

gradually. [MUNR76] establishes a computational bound for the

number of comparisons required to sort a multiset, when dupli-

cates are discarded as they are encountered. Since we are deal-

ing with large mass storage files, we are solely interested in

working with an external sorting method. A two-way merge-sort

4For the sake of simplicity, we assume that N is a power of
2. However this is not required by the algorithm. A special
delimiter may be used ito signpl the end of a run, so that a run
may be shorter than 21 pages at phase i.



10

procedure can be easily modified to perform a gradual elimination

of duplicates. If 2 input runs are free of duplicates, then the

output run produced by merging them should retain only one copy

of each record that appears in both input runs (see Figure 1).

Whenever two input tuples are compared and found to be identical,

only one of them is written to the output run and the other is

discarded (by simply advancing the appropriate pointer to the

next tuple). The cost of the duplicate elimination process using

this modified merge-sort is then determined by two factors: the

number of phases and the size of the output runs produced at each

phase.

3.2.1. Number of Phases

The number of phases required to sort a file with graduate

duplicate elimination is the same regardless of the number of

duplicate tuples. That is, log2 n merge phases are required to

sort a file of n records. This is true even in the extreme case

when all the file records are identical. In this particular

-- - - -- - - -
------------._ ... . .... . . . .. .. . .. .. . ....... .

I:: xy z ...

y z

2 input runs 1 output run (shorter than 2 input runs)

Figure 1 : Modified Merge



case, the run size is always 1 and every merge operation consists

of collapsing a pair of identical elements into one element. By

the same argument, if we start an external merge-sort with N

internally sorted pages, the number of phases required is log 2 N,

whether or not duplicates are eliminated.

3.2.2. Size of Output Runs

Since we know the number of phases, the number of 1/O opera-

tions required to execute the modified merge-sort will be com-

pletely determined if we have a method to measure how the runs

grow as the modified merge-sort algorithm proceeds. When a two-

way merge-sort is performed, the size of the runs grows by a fac-

tor of 2 at each step. However, if the merge procedure is modi-

fied in order to eliminate duplicates as they are encountered,

the size of the runs does not grow according to this regular pat-

tern. Suppose that the modified merge-sort procedure is executed

without throwing away the duplicates as they are encountered.

Instead, the duplicates would only be marked so that at any step

of the algorithm they can be rapidly identified. Then, the size

of an output run produced at phase i would still be 2 but the

number of distinct elements in the run would only be equal to the

number of unmarked elements. Thus, it seems that a reasonable

estimate for the average size of a run produced at the ith phase

of a modified merge procedure is the expected number of distinct

elements in a random subset of size 2 of a multiset. In Section

4, we present a combinatorial model that provides us with such an

estimate.



12

3.3. The Hashing Method

Essentially, this method works as follows. A bit array

(M(I), I:l..k) with about as many entries as the number of dis-

tinct records is used to check for duplication. Rather than com-

paring the records themselves, a hash function provides a way to

establish if 2 records are identical. Initially, all the entries

in M are set to zero. Then, for each record read, all the fields

are concatenated and the resulting string is hashed to provide

the appropriate index, say I. If M(I)=O, the current record is

written to the output list and M(I) is set to 1. This procedure

ensures that no record is written twice to the output list, since

identical records must hash to the same address. However, some

records may be left out only because they "collide" with previ-

ously read records. Thus, each collision means loosing a "good"

record. For this reason, it is very important to minimize the

number of collisions. One way to achieve this goal is to

increase the size of the bit array ([BABB79] recommends 4 times

as many entries as the number of distinct records). A further

improvement can be achieved by using several hash functions

rather than a single one. The source file is scanned once for

each hash function, and an output file (of non-colliding records)

is created for each scan. Then the union of the output files is

taken as the result file. The probability of missing records can

be substantially reduced by using several statistically indepen-

dent hash functions, since it is unlikely that different records

will collide for each of these functions.

[BABB79] shows that the hashing method can be very fast,

~ ,'~-.



13

when specialized hardware is used. The main problem remains the

probability of missing any records. If there is not enough a

priori knowledge on the data in order to determine that the

expected number of missing records will be extremely small 5, or

if no chance to miss a record can be taken, the cost of perform-

ing duplicate elimination with this method becomes extremely high

(since it would require scanning the source file again to check

if no record has been left out of the output file).

On a conventional computer, it seems that any duplicate

elimination method not based on sorting would require an exhaus-

tive comparison of all records and therefore lead to a slower

performance. In the future, parallel processing may offer other

alternatives. Different parallel architectures and algorithms

are investigated for the elimination of duplicates in two recent

studies ([BORA80], [GOOD80]). It may be the case that features

such as broadcast of data to several processors will be the

source for faster algorithms for duplicate elimination. The

results that have been in this area are not conclusive and will

not be presented as they are beyond the scope of this paper.

4. A Combinatorial Model for Duplicate Elimination

In this section, we consider the problem of finding all the

distinct elements in a multiset. A multiset is a set 1X, x2,

,xn} of not necessarily distinct elements. We assume that

any two of these elements can be compared yielding xi>xj, xijxj

For 50K distinct records, [BABB79] estimates that a bih1 ar-
ray of 1M bits and 4 scans can reduce the error rate to 10-

.. ..- - I ' r In nIi



14

or x1 .<x.. The x is may be real numbers or alphanumeric strings

that can be compared according to the lexicographic order. Or

they may be records with multiple alphanumeric fields, with one

(or a subset of fields) used as the comparison key. The elements

in the multiset are duplicated according to some distribution fl'

f 2' .- fo . That is there are f1 elements with a "value" v I , f2

elements with a value v2, "" ' fm elements with a value vm, and

Sfi = n. When n is large and the values are uniformly distri-

buted, we may assume that
f = _ ... f = f

and therefore

n = f*m

In this case, we define f as the "duplication factor" of the mul-

tiset.

4.1. Combinations of a Multiset

Consider the following problem. Suppose we have a multiset

of n elements with a duplication factor of f and m distinct ele-

ments so that n=f*m. Let k be any integer less or equal to n.

How many distinct combinations of k elements can be formed where

all the m distinct elements appear at least once? This number is

denoted by cfm(k). We consider combinations rather than arrange-

ments because we are interested in the identity of the elements

in a subset but not in their ordering within the subset. The

notation (P) is used to represent a q-combination of p distinct
q

elements, with the convention (P)=0 for q>p.
q



15

Lemma 1:

Cfm(k) = f*m)()m (f(m-l)) + (f(m- 2)) +(-l)1 (m f

fmk 1 k 2 k ~m-1 k

Proof: The intuitive meaning of lemma 1 is that the number of

combinations with exactly m distinct elements is equal to the

number of combinations with at most m distinct elements minus the

number of combinations with m-1, m-2, ... ,l distinct elements.

To prove the lemma, we express the total number of combinations

of size k in terms of the number of combinations of size k with m

distinct elements, of the number of combinations of size k with

m-l distinct elements, etc.
(fi m) = Cfm(k) + () cflml)(k) + () cf(- 2 )(k) +
kfm fm-l2 )m2

(m)l)) = c (k) + (m 1i) cf (k) + (m 1) Cf( 3 ) (k) +

By combining these expressions to form the right-hand side sum in

lemma 1, all the c(k) cancel each other except for Cfm(k) .

Notice also that k might be greater than f(m-i) for some i>O

which according to our notation, would imply that some of the

terms in the right hand side sum become zero.

4.2. The Average Number of Distinct Elements

Starting with a multiset that has m distinct values and a

duplication factor f, there are (fm) subsets of size k. Thus,

the probability that a random subset of size k contains exactly d

specific distinct elements (d<m) is equal to:

c (k)f*mcfd (k)/( k

The expected number of distinct elements in a random subset of



16

size k can be computed by averaging over all possible values of

d. The lowest possible value of d is rk/fl since d distinct ele-

ments cannot generate a set larger than f*d. On the other hand,

there can be at most m distinct values since we are considering

subsets of a multiset with m distinct values.

Lemma 2: The expected number of distinct elements in a subset of

size k is:

min(km)

avf m(k)= { d*(d)*cfd(k)} / (fin

d= Fk/f7

Lemma 3: For i>l

(m-i) - (m-i+l)*(l) + (m-i+2)*( 2) ... 0

in-i iProof: Let us consider the product x (l-x)i. By expanding the

second factor, we have

xm-i (1 - x ) i= xm-i - (i)xm-i+l + (i)x -i+2

and

d m-i m-i-i i xM-i i xm-i+ljxfx (l-x) } = (m-i)x (m-i+l)( 1l)x (m-i+2) (2 ) ...

For x=l and i>l this derivative is equal to zero.

Lemma 4: For k>m

k
d(m) f*m M( f(m-l)

d *Cfd(k) km(k -i k

d Fk/fj



17

Proof: Let

m

s= - d*( M)*C (k)
E d fd

d= Fk/fl

Since for each k, cfd(k) is a linear combination of terms of the

form (f(mi)) and since the upper bound for d in S is m, S may be

rewritten backwards as a linear combination of terms of the form
(f(mj) fm mk-)' j=O,l,... Then the coefficient of fk is m(m). The

coefficient of (f(mki)) is (r-i)() =-M.

For i>l, the coefficient of (f(m-i) is:

(m-i) - (m-i+l)(1)+(m-i+2) (2)

which is null by lemma 3.

Theorem 1: If k>m

av fm(k) = m- m*{ (f(m-1) ) fm
fm ~ kk

It is interesting to notice that when f is large (that is the

duplication factor is high), av fm(k) becomes a function of m and

k only. This can be proven as follows:

k

(f / k = iT (f*m-f-k+i)/(f*m-k+i)

i-i

which is approximately equal to (m-i/m) k for large f.

Therefore, avfm(k) " m(1 - (m-i/m)k) for large m.

This result confirms the intuitive idea that the number of

distinct elements in a random subset of a large multiset depends



18

only on the size of the subset and on the number of distinct

values in the multiset.

For smaller duplication factors, as we keep f and m con-

stant, avfm(k) increases monotonically as a function of k, until

for some k=k 0 it reaches the value m. From then it remains con-

stant as k increases from k to f*m. Figure 2 displays the func-
0

tion av fm(k) for f*m=32768 and for three different values of f

(8, 16, 32). The value k0 is of particular interest. It indi-

cates how large a random subset of a multiset must be in order to

contain at least one covy of all the distinct elements.

It is interesting to note that the problem we address here

is somehow relate4 te; .*e classical "occupancy problem" of the

Bose-Linstein statistics [FEUL68]. The n elements of a multiset

may be identified with n particles and the m distinct elements in

the multiset may be pictured by m distinct cells in which the

particles can fall. All the duplicates of one element are then

represented by the set of particles that fell into a single cell.

Assuming that all elements are equally duplicated, i.e. n-f m and

that there are f copies of each element, is equivalent to assum-

ing that all cells end up containing the same number of parti-

cles. In fact, this is only one of many possible states and a

more accurate modeling of duplication should consider the number

of particles in one cell as a random variable with mean equal to

f-n/m. It is known that for large n and m, the distribution of

this variable is a Poisson distribution with mean n/m [FELL68].

Estimating the number of distinct records in a multiset is simi-

lar to estimating the number of occupied cells. Here again, it



av (2s

2048 4 f=16
K 0

1024 f=32
K0

512 f=6 4

128

2 4 6 8 10 12 14 s

Figure 2
Number of Distinct Records in Successive Runs



19

has been shown that the number of empty cells (that is r-the

number of occupied cells) is a random variable with a Poisson

distribution. Thus, for very large duplication factors, the pro-

bability of finding a specified number of distinct records in a

subset of records can be estimated using the tools developed for

the classical occupancy problem.

5. Cost Analysis of Duplicate Elimination

As discussed in Section 3, the cost of a modified merge sort

is completely determined if the size of intermediate output runs

can be estimated. In this section, we evaluate this cost and

compare it to the cost of a traditional merge-sort. We assume

that the source file consists of n non-unique records, with a

duplication factor f. The modified merge algorithm will produce

an output file of m=n/f distinct records. Both the source file

and the output file records are grouped into pages and all pages,

except possibly one, contain the same number of records ("page

size" below). The cost of duplicate elimination is measured by

the number of pages read and written, assuming that the main

memory can fit no more than two page input buffers and one page

output buffer. When an intermediate run is produced, records are

also grouped into full pages before any output buffer is written

out. Only the last page of a run may not be full. Therefore,

the number of pages written when an output run is produced will

be:

ceil(number of records in a run / page size).

We assume that the external merge procedure starts with



20

internally sorted pages, and that each of these pages is free of

duplicates. This assumption is legitimate if the records are

uniformly distributed across pages in the source file, and if the

number of distinct records is much larger that the number of

records that a single page can hold.

If there were no duplicates, the number of records in each

input run read at phase i would be 2
i - 1 times the page size,

since the merge procedure is started with runs that are one page

long. Similarly, the number of records in an output run produced

at phase i would be 2i times the page size. Suppose the page

size (measured in number of records that a page can hold) is p.

Therefore, when duplicates are gradually eliminated, the expected

number of records in an input run read at phase i is equal to

avfm( 2i-lp), and the expected number of records in an output run

produced at phase i is equal to avfm( 2 ip), using the notation

defined in Section 4. On the other hand, the number of runs pro-

duced at phase i is n/2 ip (where n=fm is the number of records in

the source file). Therefore, the number of pages read at phase i

is

2 * ceil[ avfm( 2 ip)/p] * n/2i*p

and the number of pages written is

ceil[ av(2 ip)/p] * n/2i*p

Using these formulae, we have summarized in Figure 3 the total

number of page I/O's required to eliminate duplicates from a file

of 131072 records. With 128 records per page, this file spans



21

1024 disk pages. We have considered various duplication factors

from 2 (i.e. there are 2 copies of each record) to 64 (64 copies

of each record) The results indicate that a modified merge sort

requires substantially less page I/O's than a standard merge

sort, especially when the amount of duplication is large. When a

standard merge sort is used to eliminate duplicates, it must be

followed by a linear scan of the sorted file. Therefore, we also

show this augmented cost in the rightmost column of the table in

Figure 3.

A further reduction of page I/O's can be achieved by ter-

minating the modified merge procedure as soon as the runs have

achieved the result file size. When this happen, all the output

runs will essentially be identical and each of them contains all

the distinct records. As we observed in Section 4, this may

occur a few phases before the final phase, e.g. at phase number

(log 2 N)-i , for some il (N being the number of pages spanned by

I f I modified merge I standard merge I std merge+scanI

2 19008 20480 22046

4 17400 20480 21760

8 15664 20480 21632

16 13840 20480 21568

32 12000 20480 21536

64 10192 20480 21520

Figure 3 :Cost of duplicate elimination



22

the source file). When this phase is reached, a single run may

be taken as the result file since it contains all the distinct

records and no duplicates. Therefore, the elimination process is

complete and one may save the additional 1/0 operations which

serve only to collapse together several identical runs. Figure 4

shows the 1/0 cost of this "shortened" procedure, compared to the

cost of a complete modified merge sort: For this file size, the

savings in page I/O's can reach up to 7% of the total cost. For

a smaller file size (32K records) and a small duplication factor,

we have observed an improvement of the order of 10%. When vary-

ing the file size and the duplication factor, we have observed

that the improvement was greater for very small or very large

duplication factors, while it was smaller in the mid-range values

(e.g f=8 and f=16 in Figure 4).

Since we have only estimated the expected size of the runs,

If I modified merge I shorter merge Iimprovement I

2 19008 17728 1280

4 17400 16264 1136

8 15664 15280 384

16 13840 13264 576

32 12000 11328 672

64 10192 9472 720

Figure 4 Early termination of modified merge



23

our numbers are only accurate provided that the actual run size

does not fall too far away from that average. This will cer-

tainly not happen if the records are uniformly distributed in the

source file. Finally, it is very important to note that if there

is no a priori information about the number of duplicate records

present in the source file, the modified sort-merge can still be

used to eliminate duplicates and the procedure can be terminated

as soon as the run size stop growing. When this condition is

verified, a single run can be taken as the result file, although

a precise statement about the probability that such a run indeed

contains all the distinct records requires a more elaborate sta-

tistical model than the one we have used.

6. Conclusions

A model for evaluating the cost of duplicate elimination has

been presented. We have shown how, by modifying a 2-way merge-

sort, duplicates can be gradually eliminated from a large file at

a cost which is substantially less that the cost of so~rting,

Accurate formulas have been established for the number - f disk

transfers required to eliminate duplicates from a mass storage

file. These formulas can be used whenever there exists an a

priori estimate for the amount of duplication present in the

file. When such an estimate is not available, it is argued that

the modified merge-sort method should still be used. In this

case, a condition for testing that all duplicates have been

removed is described.

We have based our analysis on a combinatorial model that



24

characterizes random subsets of multisets. Only a particular

category of multisets has been considered, where all elements

have the same order. Thus, our results are only accurate for

files with a uniform duplication factor (i.e. each record is

replicated the same number of times in the entire file). Refin-

ing our analysis would require the use of more sophisticated sta-

tistical tools to model more accurately the distribution of

duplicates. However, for files with a large number of records

and with many duplicates, our model would provide a reasonable

approximation.

In addition to generalizing our cost evaluation model to the

case where the records are not uniformly duplicated, it would be

of interest to model the cost of duplicate elimination on paral-

lel computers. As mentioned in Section 3, algorithms for per-

forming this operation have already been developed ([BORA8OJ,

[GOOD8O]). However, measuring the execution time of these algo-

rithms is difficult because of the additional complexity

involved. We hope that the tools developed in this study for

modeling duplicate elimination on a conventional computer will be

of some use for a parallel computer as well. In particular, we

plan on measuring the effect of duplicate elimination on the per-

formance of the parallel merge-sort algorithm presented in

(BORA801.

The motivation for our work was the need for a method to

evaluate the cost of duplicate elimination. To our knowledge

most query optimizers in relational DBMSs schedule a duplicate

elimination operation in an ad hoc manner. The model developed



25

in this paper can serve as a tool to be used by a query optimizer

in estimating the cost of eliminating duplicates from a relation.

Using this estimated cost an optimizer can schedule operations so

that the total execution time of the query is minimized.

7. Acknowledgements

We gratefully acknowledge the comments and helpful sugges-

tions made by Haran Boral.

REFERENCES

[ASTR76] Astrahan, M., et al., System-R: A Relational Approach to
Database Management, ACM TODS, Vol. 1, No. 2, June 1976.

[BABB79] Babb, E., Implementing a Relational Database by Means of
Specialized Hardware, ACM TODS, Vol. 4, No. 1, Ma:ch 1979.

(BORA80] H. Boral, D. J. Dewitt, D. Friedland and W. K. Wilkin-
son, Parallel Algorithms for the Execution of Relational
Database Operations, University of Wisconsin Computer Science
Technical Report #402.

[FELL68] Feller W., "An Introduction to Probability and its
Applications," Wiley 1968.

(GOOD80] J. R. Goodman and A. M. Despain, A Study of the Inter-
connection of Multiple Processors in a Database Environment,
Proceedings of the 1980 Conference on Parallel Processing.

[KATZ81] R. H. Katz and N. Goodman, On the Semantics of Duplicate
Elimination, Computer Corporation of America Technical
Report.

[KERS80] L. Kerschberg, P.D. Ting, and S.B. Yao, Query Optimiza-
tion in Star Computed Networks. Bell Laboratories Database
Research Report No. 2, March 1980.

(KNUT73] D. E. Knuth, "The Art of Computer Programming, " Vol. 3,
Addison-Wesley, 1973.

[MUNR76] I. Munro and P. M. Spira, Sorting and Searching in Mul-
tisets, Siam J. Comput. Vol. 5, No. 1, March 1976.

[STON76] Stonebraker, M., The Design and Implementation of



26

Ingres, ACM TODS, Vol. 1, No. 3, September 1976.

[YA0793 Yao , B. , Optimization of Query Evaluation Algorithms,
ACM TODS, Vol. 4, No. 2, June 1979.



ATE

ILMED',


